AnyLLM
AnyLLM
            any_llm.AnyLLM
    
              Bases: ABC
Provider for the LLM.
Source code in src/any_llm/any_llm.py
                | 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 |  | 
            API_BASE = None
  
      class-attribute
      instance-attribute
  
    This is used to set the API base for the provider. It is not required but may prove useful for providers that have overridable api bases.
            BUILT_IN_TOOLS = None
  
      class-attribute
  
    Some providers have built-in tools that can be used as-is without conversion.
This should be a list of the allowed built-in tool instances.
For example, in gemini provider, this could include google.genai.types.Tool.
            ENV_API_KEY_NAME
  
      instance-attribute
  
    Environment variable name for the API key
            MISSING_PACKAGES_ERROR = None
  
      class-attribute
      instance-attribute
  
    Some providers use SDKs that are not installed by default. This flag is used to check if the packages are installed before instantiating the provider.
            PROVIDER_DOCUMENTATION_URL
  
      instance-attribute
  
    Link to the provider's documentation
            PROVIDER_NAME
  
      instance-attribute
  
    Must match the name of the provider directory (case sensitive)
            SUPPORTS_BATCH
  
      instance-attribute
  
    OpenAI Batch Completion API
            SUPPORTS_COMPLETION
  
      instance-attribute
  
    OpenAI Completion API
            SUPPORTS_COMPLETION_IMAGE
  
      instance-attribute
  
    Image Support for Completion API
            SUPPORTS_COMPLETION_PDF
  
      instance-attribute
  
    PDF Support for Completion API
            SUPPORTS_COMPLETION_REASONING
  
      instance-attribute
  
    Reasoning Content attached to Completion API Response
            SUPPORTS_COMPLETION_STREAMING
  
      instance-attribute
  
    OpenAI Streaming Completion API
            SUPPORTS_EMBEDDING
  
      instance-attribute
  
    OpenAI Embedding API
            SUPPORTS_LIST_MODELS
  
      instance-attribute
  
    OpenAI Models API
            SUPPORTS_RESPONSES
  
      instance-attribute
  
    OpenAI Responses API
            acancel_batch(batch_id, **kwargs)
  
      async
  
    Cancel a batch job asynchronously.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| batch_id | str | The ID of the batch to cancel | required | 
| **kwargs | Any | Additional provider-specific arguments | {} | 
Returns:
| Type | Description | 
|---|---|
| Batch | The cancelled batch object | 
Source code in src/any_llm/any_llm.py
              
            acompletion(model, messages, *, tools=None, tool_choice=None, temperature=None, top_p=None, max_tokens=None, response_format=None, stream=None, n=None, stop=None, presence_penalty=None, frequency_penalty=None, seed=None, user=None, parallel_tool_calls=None, logprobs=None, top_logprobs=None, logit_bias=None, stream_options=None, max_completion_tokens=None, reasoning_effort='auto', **kwargs)
  
      async
  
    Create a chat completion asynchronously.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| model | str | Model identifier for the chosen provider (e.g., model='gpt-4.1-mini' for LLMProvider.OPENAI). | required | 
| messages | list[dict[str, Any] | ChatCompletionMessage] | List of messages for the conversation | required | 
| tools | list[dict[str, Any] | Callable[..., Any]] | Any | None | List of tools for tool calling. Can be Python callables or OpenAI tool format dicts | None | 
| tool_choice | str | dict[str, Any] | None | Controls which tools the model can call | None | 
| temperature | float | None | Controls randomness in the response (0.0 to 2.0) | None | 
| top_p | float | None | Controls diversity via nucleus sampling (0.0 to 1.0) | None | 
| max_tokens | int | None | Maximum number of tokens to generate | None | 
| response_format | dict[str, Any] | type[BaseModel] | None | Format specification for the response | None | 
| stream | bool | None | Whether to stream the response | None | 
| n | int | None | Number of completions to generate | None | 
| stop | str | list[str] | None | Stop sequences for generation | None | 
| presence_penalty | float | None | Penalize new tokens based on presence in text | None | 
| frequency_penalty | float | None | Penalize new tokens based on frequency in text | None | 
| seed | int | None | Random seed for reproducible results | None | 
| user | str | None | Unique identifier for the end user | None | 
| parallel_tool_calls | bool | None | Whether to allow parallel tool calls | None | 
| logprobs | bool | None | Include token-level log probabilities in the response | None | 
| top_logprobs | int | None | Number of alternatives to return when logprobs are requested | None | 
| logit_bias | dict[str, float] | None | Bias the likelihood of specified tokens during generation | None | 
| stream_options | dict[str, Any] | None | Additional options controlling streaming behavior | None | 
| max_completion_tokens | int | None | Maximum number of tokens for the completion | None | 
| reasoning_effort | Literal['minimal', 'low', 'medium', 'high', 'auto'] | None | Reasoning effort level for models that support it. "auto" will map to each provider's default. | 'auto' | 
| **kwargs | Any | Additional provider-specific arguments that will be passed to the provider's API call. | {} | 
Returns:
| Type | Description | 
|---|---|
| ChatCompletion | AsyncIterator[ChatCompletionChunk] | The completion response from the provider | 
Source code in src/any_llm/any_llm.py
              
            acreate_batch(input_file_path, endpoint, completion_window='24h', metadata=None, **kwargs)
  
      async
  
    Create a batch job asynchronously.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| input_file_path | str | Path to a local file containing batch requests in JSONL format. | required | 
| endpoint | str | The endpoint to be used for all requests (e.g., '/v1/chat/completions') | required | 
| completion_window | str | The time frame within which the batch should be processed (default: '24h') | '24h' | 
| metadata | dict[str, str] | None | Optional custom metadata for the batch | None | 
| **kwargs | Any | Additional provider-specific arguments | {} | 
Returns:
| Type | Description | 
|---|---|
| Batch | The created batch object | 
Source code in src/any_llm/any_llm.py
              
            alist_batches(after=None, limit=None, **kwargs)
  
      async
  
    List batch jobs asynchronously.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| after | str | None | A cursor for pagination. Returns batches after this batch ID. | None | 
| limit | int | None | Maximum number of batches to return (default: 20) | None | 
| **kwargs | Any | Additional provider-specific arguments | {} | 
Returns:
| Type | Description | 
|---|---|
| Sequence[Batch] | A list of batch objects | 
Source code in src/any_llm/any_llm.py
              
            aresponses(model, input_data, *, tools=None, tool_choice=None, max_output_tokens=None, temperature=None, top_p=None, stream=None, instructions=None, max_tool_calls=None, parallel_tool_calls=None, reasoning=None, text=None, **kwargs)
  
      async
  
    Create a response using the OpenAI-style Responses API.
This follows the OpenAI Responses API shape and returns the aliased
any_llm.types.responses.Response type. If stream=True, an iterator of
any_llm.types.responses.ResponseStreamEvent items is returned.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| model | str | Model identifier for the chosen provider (e.g., model='gpt-4.1-mini' for LLMProvider.OPENAI). | required | 
| input_data | str | ResponseInputParam | The input payload accepted by provider's Responses API. For OpenAI-compatible providers, this is typically a list mixing text, images, and tool instructions, or a dict per OpenAI spec. | required | 
| tools | list[dict[str, Any] | Callable[..., Any]] | Any | None | Optional tools for tool calling (Python callables or OpenAI tool dicts) | None | 
| tool_choice | str | dict[str, Any] | None | Controls which tools the model can call | None | 
| max_output_tokens | int | None | Maximum number of output tokens to generate | None | 
| temperature | float | None | Controls randomness in the response (0.0 to 2.0) | None | 
| top_p | float | None | Controls diversity via nucleus sampling (0.0 to 1.0) | None | 
| stream | bool | None | Whether to stream response events | None | 
| instructions | str | None | A system (or developer) message inserted into the model's context. | None | 
| max_tool_calls | int | None | The maximum number of total calls to built-in tools that can be processed in a response. This maximum number applies across all built-in tool calls, not per individual tool. Any further attempts to call a tool by the model will be ignored. | None | 
| parallel_tool_calls | int | None | Whether to allow the model to run tool calls in parallel. | None | 
| reasoning | Any | None | Configuration options for reasoning models. | None | 
| text | Any | None | Configuration options for a text response from the model. Can be plain text or structured JSON data. | None | 
| **kwargs | Any | Additional provider-specific arguments that will be passed to the provider's API call. | {} | 
Returns:
| Type | Description | 
|---|---|
| Response | AsyncIterator[ResponseStreamEvent] | Either a  | 
| Response | AsyncIterator[ResponseStreamEvent] | 
 | 
Raises:
| Type | Description | 
|---|---|
| NotImplementedError | If the selected provider does not support the Responses API. | 
Source code in src/any_llm/any_llm.py
              
            aretrieve_batch(batch_id, **kwargs)
  
      async
  
    Retrieve a batch job asynchronously.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| batch_id | str | The ID of the batch to retrieve | required | 
| **kwargs | Any | Additional provider-specific arguments | {} | 
Returns:
| Type | Description | 
|---|---|
| Batch | The batch object | 
Source code in src/any_llm/any_llm.py
              
            cancel_batch(batch_id, **kwargs)
    Cancel a batch synchronously.
Source code in src/any_llm/any_llm.py
              
            completion(**kwargs)
    Create a chat completion synchronously.
Source code in src/any_llm/any_llm.py
              
            create(provider, api_key=None, api_base=None, **kwargs)
  
      classmethod
  
    Create a provider instance using the given provider name and config.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| provider | str | LLMProvider | The provider name (e.g., 'openai', 'anthropic') | required | 
| api_key | str | None | API key for the provider | None | 
| api_base | str | None | Base URL for the provider API | None | 
| **kwargs | Any | Additional provider-specific arguments | {} | 
Returns:
| Type | Description | 
|---|---|
| AnyLLM | Provider instance for the specified provider | 
Source code in src/any_llm/any_llm.py
              
            create_batch(**kwargs)
    Create a batch synchronously.
Source code in src/any_llm/any_llm.py
              
            get_all_provider_metadata()
  
      classmethod
  
    Get metadata for all supported providers.
Returns:
| Type | Description | 
|---|---|
| list[ProviderMetadata] | List of dictionaries containing provider metadata | 
Source code in src/any_llm/any_llm.py
              
            get_provider_class(provider_key)
  
      classmethod
  
    Get the provider class without instantiating it.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| provider_key | str | LLMProvider | The provider key (e.g., 'anthropic', 'openai') | required | 
Returns:
| Type | Description | 
|---|---|
| type[AnyLLM] | The provider class | 
Source code in src/any_llm/any_llm.py
              
            get_provider_enum(provider_key)
  
      classmethod
  
    Convert a string provider key to a ProviderName enum.
Source code in src/any_llm/any_llm.py
              
            get_provider_metadata()
  
      classmethod
  
    Get provider metadata without requiring instantiation.
Returns:
| Type | Description | 
|---|---|
| ProviderMetadata | Dictionary containing provider metadata including name, environment variable, | 
| ProviderMetadata | documentation URL, and class name. | 
Source code in src/any_llm/any_llm.py
              
            get_supported_providers()
  
      classmethod
  
    
            list_batches(after=None, limit=None, **kwargs)
    List batches synchronously.
Source code in src/any_llm/any_llm.py
              
            responses(**kwargs)
    Create a response synchronously.
Source code in src/any_llm/any_llm.py
              
            retrieve_batch(batch_id, **kwargs)
    Retrieve a batch synchronously.
Source code in src/any_llm/any_llm.py
              
            split_model_provider(model)
  
      classmethod
  
    Extract the provider key from the model identifier.
Supports both new format 'provider:model' (e.g., 'mistral:mistral-small') and legacy format 'provider/model' (e.g., 'mistral/mistral-small').
The legacy format will be deprecated in version 1.0.