Completion
Completion Types
Data models and types for completion operations.
            any_llm.types.completion
    
            CompletionParams
    
              Bases: BaseModel
Normalized parameters for chat completions.
This model is used internally to pass structured parameters from the public API layer to provider implementations, avoiding very long function signatures while keeping type safety.
Source code in src/any_llm/types/completion.py
                
            frequency_penalty = None
  
      class-attribute
      instance-attribute
  
    Penalize new tokens based on frequency in text
            logit_bias = None
  
      class-attribute
      instance-attribute
  
    Bias the likelihood of specified tokens during generation
            logprobs = None
  
      class-attribute
      instance-attribute
  
    Include token-level log probabilities in the response
            max_completion_tokens = None
  
      class-attribute
      instance-attribute
  
    Maximum number of tokens for the completion (provider-dependent)
            max_tokens = None
  
      class-attribute
      instance-attribute
  
    Maximum number of tokens to generate
            messages
  
      instance-attribute
  
    List of messages for the conversation
            model_id
  
      instance-attribute
  
    Model identifier (e.g., 'mistral-small-latest')
            n = None
  
      class-attribute
      instance-attribute
  
    Number of completions to generate
            parallel_tool_calls = None
  
      class-attribute
      instance-attribute
  
    Whether to allow parallel tool calls
            presence_penalty = None
  
      class-attribute
      instance-attribute
  
    Penalize new tokens based on presence in text
            reasoning_effort = 'auto'
  
      class-attribute
      instance-attribute
  
    Reasoning effort level for models that support it. "auto" will map to each provider's default.
            response_format = None
  
      class-attribute
      instance-attribute
  
    Format specification for the response
            seed = None
  
      class-attribute
      instance-attribute
  
    Random seed for reproducible results
            stop = None
  
      class-attribute
      instance-attribute
  
    Stop sequences for generation
            stream = None
  
      class-attribute
      instance-attribute
  
    Whether to stream the response
            stream_options = None
  
      class-attribute
      instance-attribute
  
    Additional options controlling streaming behavior
            temperature = None
  
      class-attribute
      instance-attribute
  
    Controls randomness in the response (0.0 to 2.0)
            tool_choice = None
  
      class-attribute
      instance-attribute
  
    Controls which tools the model can call
            tools = None
  
      class-attribute
      instance-attribute
  
    List of tools for tool calling. Should be converted to OpenAI tool format dicts
            top_logprobs = None
  
      class-attribute
      instance-attribute
  
    Number of top alternatives to return when logprobs are requested
            top_p = None
  
      class-attribute
      instance-attribute
  
    Controls diversity via nucleus sampling (0.0 to 1.0)
            user = None
  
      class-attribute
      instance-attribute
  
    Unique identifier for the end user