Completion
Completion Types
Data models and types for completion operations.
any_llm.types.completion
CompletionParams
Bases: BaseModel
Normalized parameters for chat completions.
This model is used internally to pass structured parameters from the public API layer to provider implementations, avoiding very long function signatures while keeping type safety.
Source code in src/any_llm/types/completion.py
frequency_penalty = None
class-attribute
instance-attribute
Penalize new tokens based on frequency in text
logit_bias = None
class-attribute
instance-attribute
Bias the likelihood of specified tokens during generation
logprobs = None
class-attribute
instance-attribute
Include token-level log probabilities in the response
max_completion_tokens = None
class-attribute
instance-attribute
Maximum number of tokens for the completion (provider-dependent)
max_tokens = None
class-attribute
instance-attribute
Maximum number of tokens to generate
messages
instance-attribute
List of messages for the conversation
model_id
instance-attribute
Model identifier (e.g., 'mistral-small-latest')
n = None
class-attribute
instance-attribute
Number of completions to generate
parallel_tool_calls = None
class-attribute
instance-attribute
Whether to allow parallel tool calls
presence_penalty = None
class-attribute
instance-attribute
Penalize new tokens based on presence in text
reasoning_effort = 'auto'
class-attribute
instance-attribute
Reasoning effort level for models that support it. "auto" will map to each provider's default.
response_format = None
class-attribute
instance-attribute
Format specification for the response
seed = None
class-attribute
instance-attribute
Random seed for reproducible results
stop = None
class-attribute
instance-attribute
Stop sequences for generation
stream = None
class-attribute
instance-attribute
Whether to stream the response
stream_options = None
class-attribute
instance-attribute
Additional options controlling streaming behavior
temperature = None
class-attribute
instance-attribute
Controls randomness in the response (0.0 to 2.0)
tool_choice = None
class-attribute
instance-attribute
Controls which tools the model can call
tools = None
class-attribute
instance-attribute
List of tools for tool calling. Should be converted to OpenAI tool format dicts
top_logprobs = None
class-attribute
instance-attribute
Number of top alternatives to return when logprobs are requested
top_p = None
class-attribute
instance-attribute
Controls diversity via nucleus sampling (0.0 to 1.0)
user = None
class-attribute
instance-attribute
Unique identifier for the end user